Orthonormalized eigenstates of the operator $\left\{\left(a_{q} f\left(N_{q}\right)\right)\right\}^{k}(k \geq 1)$ and their generation

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2000 J. Phys. A: Math. Gen. 335599
(http://iopscience.iop.org/0305-4470/33/31/312)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.123
The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

Orthonormalized eigenstates of the operator $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ ($k \geqslant 1$) and their generation

Xiao-Ming Liu
Department of Physics, Beijing Normal University, Beijing 100875, People's Republic of China and
CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China
E-mail: Liuxm@263.net

Received 12 April 2000

Abstract

The k orthonormalized eigenstates of the k th power $\left(a_{q} f\left(N_{q}\right)\right)^{k}(k \geqslant 1)$ of the generalized q-boson annihilation operator $a_{q} f\left(N_{q}\right)$ are obtained, and their properties are discussed. An alternative method to construct them is proposed, and it is shown that all of them can be expressed as a linear superposition of $k q-f$-coherent states that have the same amplitude but different phases. Physically, they can be generated by a linear superposition of the time-dependent $q-f$-coherent states at different instants.

1. Introduction

The coherent states introduced by Schrödinger [1] and Glauber [2] are eigenstates of the boson annihilation operator a, and have widespread applications in the fields of physics [3-7]. The even and odd coherent states [8], which are two orthonormalized eigenstates of the square a^{2} of the operator a, play an important role in quantum optics [9-11]. The k orthonormalized eigenstates of the k th power $a^{k}(k \geqslant 1)$ were constructed and applied to quantum optics [12,13]. The notion of coherent states was extended to q-coherent states [14], which are eigenstates of the q-boson annihilation operator a_{q}. The q-coherent states were well studied and applied widely to quantum optics and mathematical physics [14-22]. The even and odd q-coherent states [23], defined as two orthonormalized eigenstates of the square a_{q}^{2} of the operator a_{q}, have non-classical effects [24]. Moreover, the k orthonormalized eigenstates of the k th power a_{q}^{k} were well investigated and applied to quantum optics [25,26].

Recently, there has been much interest in the study of nonlinear coherent states called f coherent states [27], which are eigenstates of the annihilation operator $a f(N)$ of f-oscillators, where $f(N)$ is an operator-valued function of the boson number operator N. A class of f-coherent states can be realized physically as the stationary states of the centre-of-mass motion of a trapped ion [28]. The f-coherent states exhibit non-classical features such as squeezing and self-splitting. Subsequently, the even and odd f-coherent states, which are two orthonormalized eigenstates of the square $(a f(N))^{2}$ of the operator $a f(N)$, were constructed and their non-classical effects were studied [29,30]. In a previous paper [31], we obtained k orthonormalized eigenstates of the k th power $(a f(N))^{k}$ and discussed their properties. Naturally, in this paper, it is very desirable to study the orthonormalized eigenstates of the k th power $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ of the operator $a_{q} f\left(N_{q}\right)$, where $f\left(N_{q}\right)$ is an operator-valued function of
the q-boson number operator N_{q}. We refer to $a_{q} f\left(N_{q}\right)$ as the generalized q-boson annihilation operator.

The paper is organized as follows. In section 2, the k orthonormalized eigenstates of the operator $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ are obtained, and their properties are discussed. In section 3, an alternative method to construct them is proposed. Their physical meaning is explored in section 4.

2. The k orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$

The q-boson annihilation operator a_{q}, creation operator a_{q}^{+}and number operator N_{q} satisfy the quantum Heisenberg-Weyl algebra

$$
\begin{align*}
& a_{q} a_{q}^{+}-q a_{q}^{+} a_{q}=q^{-N_{q}} \tag{1}\\
& {\left[N_{q}, a_{q}\right]=-a_{q} \quad\left[N_{q}, a_{q}^{+}\right]=a_{q}^{+}} \tag{2}
\end{align*}
$$

with q real and positive. The operators a_{q}, a_{q}^{+}and N_{q} act in a Hilbert space with the q occupation number basis $|n\rangle_{q}(n=0,1,2, \ldots)$, such that

$$
\begin{equation*}
a_{q}|0\rangle_{q}=0 \quad|n\rangle_{q}=\frac{\left(a_{q}^{+}\right)^{n}}{\sqrt{[n]!}}|0\rangle_{q} \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& {[n]!=[n][n-1] \ldots[1] \quad[0]!=1} \tag{4}\\
& {[n]=\frac{q^{n}-q^{-n}}{q-q^{-1}}} \tag{5}
\end{align*}
$$

Their actions on the basis states are given by
$a_{q}|n\rangle_{q}=\sqrt{[n]}|n-1\rangle_{q} \quad a_{q}^{+}|n\rangle_{q}=\sqrt{[n+1]}|n+1\rangle_{q} \quad N_{q}|n\rangle_{q}=n|n\rangle_{q}$.
Let us consider the following states:

$$
\begin{equation*}
\left|\psi_{j}(\alpha, f)\right\rangle_{k}=C_{j} \sum_{n=0}^{\infty} \frac{\alpha^{k n+j}}{\sqrt{[k n+j]!} f(k n+j)!}|k n+j\rangle_{q} \tag{7}
\end{equation*}
$$

with

$$
\begin{equation*}
f(k n+j)!=f(k n+j) f(k n+j-1) \ldots f(1) \quad f(0)!=1 \tag{8}
\end{equation*}
$$

where k is a positive integer $(k=1,2,3, \ldots) ; j=0,1, \ldots, k-1 ; C_{j}$ are normalized factors and α is a complex parameter. Let $A=a_{q} f\left(N_{q}\right)$. With the k th power A^{k} operating on $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$, we have

$$
\begin{equation*}
A^{k}\left|\psi_{j}(\alpha, f)\right\rangle_{k}=\alpha^{k}\left|\psi_{j}(\alpha, f)\right\rangle_{k} \tag{9}
\end{equation*}
$$

As a result, the k states of (7) are all the eigenstates of the operator $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ with the same eigenvalue α^{k}. It is easy to check that, for the same value of k, these states are orthogonal to each other with respect to the subscript j, i.e.

$$
\begin{equation*}
{ }_{k}\left\langle\psi_{i}(\alpha, f) \mid \psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k}=0 \quad i, j=0,1, \ldots, k-1, i \neq j \tag{10}
\end{equation*}
$$

Let $|\alpha|^{2}=x$. We easily suppose C_{j} to be a real number. Using the normalized conditions
${ }_{k}\left\langle\psi_{j}(\alpha, f) \mid \psi_{j}(\alpha, f)\right\rangle_{k}=C_{j}^{2} \sum_{n=0}^{\infty} \frac{x^{k n+j}}{[k n+j]!|f(k n+j)!|^{2}}=C_{j}^{2} A_{j}(x, f)=1$
we have

$$
\begin{equation*}
C_{j}=A_{j}^{-\frac{1}{2}}(x, f) \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{j}(x, f)=\sum_{n=0}^{\infty} \frac{x^{k n+j}}{[k n+j]!|f(k n+j)!|^{2}} \tag{13}
\end{equation*}
$$

From (13) it follows that

$$
\begin{equation*}
\sum_{j=0}^{k-1} A_{j}(x, f)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!|f(n)!|^{2}} \equiv e_{q, f}(x) \tag{14}
\end{equation*}
$$

It should be noted that the k states $\left|\psi_{j}(\alpha, f)\right\rangle_{k}(j=0,1, \ldots, k-1)$ are normalizable provided C_{j} are non-zero and finite. This means that the terms in summation for $A_{j}(x, f)$ should be such that

$$
\begin{equation*}
|\alpha|^{2}<\lim _{n \rightarrow \infty}[n]|f(n)|^{2} \tag{15}
\end{equation*}
$$

If $|f(n)|$ decreases faster than $[n]^{-\frac{1}{2}}$ for large n, then the range of α for which the states $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ are normalizable is restricted to values satisfying (15) and in other cases the range of α is unrestricted.

We may obtain
$A\left|\psi_{j}(\alpha, f)\right\rangle_{k}=\alpha A_{j}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) A_{j-1}^{\frac{1}{2}}\left(|\alpha|^{2}, f\right)\left|\psi_{j-1}(\alpha, f)\right\rangle_{k} \quad j=1,2, \ldots, k-1$
$A^{i}\left|\psi_{0}(\alpha, f)\right\rangle_{k}=\alpha^{i} A_{0}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) A_{k-i}^{\frac{1}{2}}\left(|\alpha|^{2}, f\right)\left|\psi_{k-i}(\alpha, f)\right\rangle_{k} \quad i=1,2, \ldots, k$.
This indicates that, by the successive actions of the operator A, the k eigenstate vectors of A^{k} can be transformed into each other in this way: $\left|\psi_{0}\right\rangle_{k} \rightarrow\left|\psi_{k-1}\right\rangle_{k} \rightarrow\left|\psi_{k-2}\right\rangle_{k} \rightarrow \cdots \rightarrow$ $\left|\psi_{1}\right\rangle_{k} \rightarrow\left|\psi_{0}\right\rangle_{k}$. Actually, the operator A plays the role of a rotating operator in the k eigenstate vectors of A^{k}.

According to (7), for $k=1$, we obtain

$$
\begin{equation*}
\left|\psi_{0}(\alpha, f)\right\rangle_{1}=e_{q, f}^{-\frac{1}{2}}\left(|\alpha|^{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{[n]!} f(n)!}|n\rangle_{q} \equiv|\alpha, f\rangle \tag{18}
\end{equation*}
$$

The states $|\alpha, f\rangle$ are eigenstates of $a_{q} f\left(N_{q}\right)$. This is a generalization of the notion of f coherent states, which are eigenstates of $a f(N)$. Therefore, we call $|\alpha, f\rangle$ the $q-f$-coherent states.

According to (7), for $k=2$, we obtain

$$
\begin{align*}
& \left|\psi_{0}(\alpha, f)\right\rangle_{2}=A_{0}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) \sum_{n=0}^{\infty} \frac{\alpha^{2 n}}{\sqrt{[2 n]!} f(2 n)!}|2 n\rangle_{q} \tag{19}\\
& \left|\psi_{1}(\alpha, f)\right\rangle_{2}=A_{1}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) \sum_{n=0}^{\infty} \frac{\alpha^{2 n+1}}{\sqrt{[2 n+1]!} f(2 n+1)!}|2 n+1\rangle_{q} . \tag{20}
\end{align*}
$$

The states $\left|\psi_{0}(\alpha, f)\right\rangle_{2}$ and $\left|\psi_{1}(\alpha, f)\right\rangle_{2}$ are two orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{2}$. This is a generalization of the notion of even and odd f-coherent states, which are two orthonormalized eigenstates of $(a f(N))^{2}$. Therefore, we call $\left|\psi_{0}(\alpha, f)\right\rangle_{2}$ and $\left|\psi_{1}(\alpha, f)\right\rangle_{2}$ the even and odd $q-f$-coherent states, respectively.

In terms of the k eigenstates $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ of A^{k}, the $q-f$-coherent states can be expanded in this way:

$$
\begin{equation*}
|\alpha, f\rangle=e_{q, f}^{-\frac{1}{2}}\left(|\alpha|^{2}\right)\left[\sum_{j=0}^{k-1} A_{j}^{\frac{1}{2}}\left(|\alpha|^{2}, f\right)\left|\psi_{j}(\alpha, f)\right\rangle_{k}\right] \tag{21}
\end{equation*}
$$

Note that $|\alpha, f\rangle$ and $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ are non-trivially different.

We should emphasize that here we discuss orthogonality of $\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ with respect to subscript j. For $\alpha \neq \alpha^{\prime}$, we obtain
${ }_{k}\left\langle\psi_{j}(\alpha, f) \mid \psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k}=\left[A_{j}\left(|\alpha|^{2}, f\right) A_{j}\left(\left|\alpha^{\prime}\right|^{2}, f\right)\right]^{-\frac{1}{2}} A_{j}\left(\alpha^{*} \alpha^{\prime}, f\right) \neq 0$.
Therefore, when $\alpha \neq \alpha^{\prime},\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ and $\left|\psi_{j}\left(\alpha^{\prime}, f\right)\right\rangle_{k}$ are not orthogonal.
As three limiting cases, for $q \rightarrow 1\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ become k orthonormalized eigenstates of $(\text { af }(N))^{k}$; for $f\left(N_{q}\right) \rightarrow 1\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ become those of a_{q}^{k}; for $q \rightarrow 1$ and $f\left(N_{q}\right) \rightarrow 1\left|\psi_{j}(\alpha, f)\right\rangle_{k}$ become those of a^{k}.

Now, we give some applications of the result (7). Taking $f\left(N_{q}\right)$ to be $\frac{1}{\sqrt{\left[N_{q}\right]}}$, we find k orthonormalized eigenstates of the k th power $(\exp (\mathrm{i} \varphi))^{k}$ of the q-photon phase operator $\exp (\mathrm{i} \varphi)\left(\equiv a_{q} \frac{1}{\sqrt{\left[\mathrm{~N}_{q}\right]}}\right)$ [16], namely,

$$
\begin{equation*}
\left|\psi_{j}(\alpha, f)\right\rangle_{k}=\frac{\sqrt{1-|\alpha|^{2 k}}}{|\alpha|^{j}} \sum_{n=0}^{\infty} \alpha^{k n+j}|k n+j\rangle_{q} \quad|\alpha|<1 . \tag{23}
\end{equation*}
$$

Taking $f\left(N_{q}\right)$ to be $\sqrt{\left[N_{q}\right]}$, we find k orthonormalized eigenstates of the k th power K_{-}^{k} of the annihilation operator $K_{-}\left(\equiv a_{q} \sqrt{\left[N_{q}\right]}\right)$ of the quantum $S U(1,1)_{q}$ algebra in the HolsteinPrimakoff realization [15], namely,

$$
\begin{equation*}
\left|\psi_{j}(\alpha, f)\right\rangle_{k}=A_{j}^{-\frac{1}{2}} \sum_{n=0}^{\infty} \frac{\alpha^{k n+j}}{[k n+j]!}|k n+j\rangle_{q} \quad|\alpha|<\infty \tag{24}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{j}=\sum_{n=0}^{\infty} \frac{\left(|\alpha|^{2}\right)^{k n+j}}{([k n+j]!)^{2}} \tag{25}
\end{equation*}
$$

It is noteworthy that Klauder and co-workers have studied an extremely wide class of coherent states that includes the f-coherent states as a small subset $[32,33]$. However, the k orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ are different from the Klauder-type coherent states. In the limiting case $q \rightarrow 1$, the k states can also be obtained by considering a suitable linear superposition of the Klauder-type states.

3. An alternative method for construction of the \boldsymbol{k} orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$

According to (18), we consider the following $k q-f$-coherent states:

$$
\begin{align*}
\left|\alpha_{l}, f\right\rangle & =\left|\alpha \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle \\
& =e_{q, f}^{-\frac{1}{2}}\left(|\alpha|^{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{[n]!} f(n)!} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l n}|n\rangle_{q} \quad l=0,1, \ldots, k-1 . \tag{26}
\end{align*}
$$

The $k q-f$-coherent states are discretely distributed with an equal interval of angle along a circle around the origin of the α-plane. The inner product of the two states of (26) is
$\left\langle\alpha_{l}, f \mid \alpha_{l^{\prime}}, f\right\rangle=e_{q, f}^{-1}\left(|\alpha|^{2}\right) e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k}\left(l^{\prime}-l\right)}\right) \quad l, l^{\prime}=0,1, \ldots, k-1$.
Consider a linear transformation S such that

$$
\begin{equation*}
|\varphi\rangle_{k}=S|\alpha, f\rangle_{k} \tag{28}
\end{equation*}
$$

where

$$
|\alpha, f\rangle_{k}=\left[\begin{array}{c}
\left|\alpha_{0}, f\right\rangle \tag{29}\\
\left|\alpha_{1}, f\right\rangle \\
\vdots \\
\left|\alpha_{k-1}, f\right\rangle
\end{array}\right] \quad|\varphi\rangle_{k}=\left[\begin{array}{c}
\left|\varphi_{0}\right\rangle_{k} \\
\left|\varphi_{1}\right\rangle_{k} \\
\vdots \\
\left|\varphi_{k-1}\right\rangle_{k}
\end{array}\right] .
$$

S is a $k \times k$ matrix that makes φ_{j} orthonormal, and ${ }_{k}\left\langle\varphi_{j} \mid \varphi_{j^{\prime}}\right\rangle_{k}=\delta_{j j^{\prime}}$. The above requirement leads to a set of algebraic equations for $S_{i j}$,

$$
\begin{equation*}
\sum_{l=0}^{k-1} \sum_{l^{\prime}=0}^{k-1} e_{q, f}^{-1}\left(|\alpha|^{2}\right) e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k}\left(l^{\prime}-l\right)}\right) S_{j l}^{*} S_{j^{\prime} l^{\prime}}=\delta_{j j^{\prime}} \tag{30}
\end{equation*}
$$

The solution of equation (30), $S_{i j}$, can be found as follows. By virtue of the relation

$$
\begin{equation*}
\sum_{l^{\prime}=0}^{k-1} e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{ \pm \mathrm{i} \frac{2 \pi}{k}\left(l^{\prime}-l\right)}\right) \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l^{\prime}}=\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l} \sum_{l^{\prime}=0}^{k-1} e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{ \pm \mathrm{i} \frac{2 \pi}{k} l^{\prime}}\right) \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l^{\prime}} \tag{31}
\end{equation*}
$$

the matrix elements of S that satisfy (30) are given by

$$
\begin{align*}
S_{j l} & =\frac{1}{k} e_{q, f}^{\frac{1}{2}}\left(|\alpha|^{2}\right)\left[\frac{1}{k} \sum_{l^{\prime}=0}^{k-1} e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l^{\prime}}\right) \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l^{\prime}}\right]^{-\frac{1}{2}} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l} \\
& =\frac{1}{k} e_{q, f}^{\frac{1}{2}}\left(|\alpha|^{2}\right) A_{j}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l} \quad j, l=0,1, \ldots, k-1 . \tag{32}
\end{align*}
$$

From (28) and (32), we obtain k orthonormalized states
$\left|\varphi_{j}\right\rangle_{k}=\frac{1}{k} A_{j}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) e_{q, f}^{\frac{1}{2}}\left(|\alpha|^{2}\right) \sum_{l=0}^{k-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l}\left|\alpha \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle \quad j=0,1, \ldots, k-1$
which are just what we want. By use of the relation

$$
\begin{equation*}
\sum_{l=0}^{k-1} \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l t}=0 \quad t=1,2, \ldots, k-1 \tag{34}
\end{equation*}
$$

it can be proved that

$$
\begin{equation*}
\left|\varphi_{j}\right\rangle_{k}=\left|\psi_{j}(\alpha, f)\right\rangle_{k} \quad j=0,1, \ldots, k-1 \tag{35}
\end{equation*}
$$

According to (33), for $k=2$, we obtain

$$
\begin{align*}
\left|\varphi_{0}\right\rangle_{2} & =\frac{1}{2} A_{0}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) e_{q, f}^{\frac{1}{2}}\left(|\alpha|^{2}\right)(|\alpha, f\rangle+|-\alpha, f\rangle) \tag{36}\\
\left|\varphi_{1}\right\rangle_{2} & =\frac{1}{2} A_{1}^{-\frac{1}{2}}\left(|\alpha|^{2}, f\right) e_{q, f}^{\frac{1}{2}}\left(|\alpha|^{2}\right)(|\alpha, f\rangle-|-\alpha, f\rangle) \tag{37}
\end{align*}
$$

This indicates that the even and odd $q-f$-coherent states can be represented as a linear superposition of two $q-f$-coherent states, which have the same amplitude but opposite phases.

The states $\left|\varphi_{j}\right\rangle_{k}(j=0,1, \ldots, k-1)$ in (33) are exactly the k orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ obtained in section 2, but reconstructed here by a different method. From the above reconstruction, we come to an important conclusion that any orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ can be expressed as a linear superposition of $k q-f$-coherent states $\left|\alpha \mathrm{e}^{\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle$ ($l=0,1, \ldots, k-1$), which have the same amplitude but different phases. Yet, from (33), one can find the connection between $q-f$-coherent states and these k eigenstates.

It is interesting to note that the above discussion includes two limiting cases of $f\left(N_{q}\right) \rightarrow 1$ and $q \rightarrow 1$ studied in [25] and [31], respectively.

4. Physical meaning of the \boldsymbol{k} orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$

In this section, we shall explore the physical meaning of the k orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ by constructing them from the time-dependent $q-f$-coherent states generated from a time-dependent Schrödinger equation.

Suppose a system evolves according to the time-dependent Schrödinger equation

$$
\begin{equation*}
\mathrm{i} \hbar \frac{\partial}{\partial t}|\chi(t)\rangle=H|\chi(t)\rangle \tag{38}
\end{equation*}
$$

If the system is initially $(t=0)$ in a $q-f$-coherent state $|\alpha, f\rangle$, and the Hamiltonian is independent of time, then at time t the system reaches the state

$$
\begin{equation*}
|\chi(t)\rangle=\mathrm{e}^{-\frac{i}{\hbar} H t}|\alpha, f\rangle . \tag{39}
\end{equation*}
$$

Choosing $H=\hbar \omega N_{q}$, we have

$$
\begin{equation*}
|\chi(t)\rangle=\left|\alpha \mathrm{e}^{-\mathrm{i} \omega t}, f\right\rangle . \tag{40}
\end{equation*}
$$

Therefore, at the instant

$$
\begin{equation*}
t_{l}=\frac{2 \pi}{\omega} \frac{l}{k} \quad k=1,2,3, \ldots \quad l=0,1, \ldots, k-1 \tag{41}
\end{equation*}
$$

the system is in the state

$$
\begin{equation*}
\left|\chi\left(t_{l}\right)\right\rangle=\left|\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle . \tag{42}
\end{equation*}
$$

Now let us consider a linear superposition of the above time-dependent $q-f$-coherent states at different instants,

$$
\begin{equation*}
\left|\phi_{i}\right\rangle=\sum_{l=0}^{k-1} C_{l}^{i}\left|\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle . \tag{43}
\end{equation*}
$$

Suitably choosing the expansion coefficients, we can construct the k orthonormalized states. The inner product of the two states of (43) is

$$
\begin{align*}
\left\langle\phi_{i} \mid \phi_{j}\right\rangle & =\sum_{l=0}^{k-1} \sum_{l^{\prime}=0}^{k-1}\left(C_{l}^{i}\right)^{*} C_{l^{\prime}}^{j}\left\langle\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}, f \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l^{\prime}}\right., f\right\rangle \\
& =\left\langle C_{i}\right| \tilde{M}\left|C_{j}\right\rangle \quad i, j=0,1, \ldots, k-1 \tag{44}
\end{align*}
$$

where
$\left|C_{j}\right\rangle=\left[\begin{array}{c}C_{0}^{j} \\ C_{1}^{j} \\ \vdots \\ C_{k-1}^{j}\end{array}\right]$

$$
\begin{equation*}
\left\langle C_{i}\right|=\left[C_{0}^{i} C_{1}^{i} \ldots C_{k-1}^{i}\right]^{*} \tag{46}
\end{equation*}
$$

$\tilde{M}=\left[\begin{array}{cccc}\langle\alpha \mid \alpha\rangle & \left\langle\alpha \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}}\right.\right\rangle & \cdots & \left\langle\alpha \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)}\right.\right\rangle \\ \left\langle\left.\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}} \right\rvert\, \alpha\right\rangle & \left\langle\left.\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}} \right\rvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}}\right\rangle & \cdots & \left\langle\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}} \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)}\right.\right\rangle \\ \vdots & \vdots & \vdots & \vdots \\ \left\langle\left.\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)} \right\rvert\, \alpha\right\rangle & \left\langle\left.\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)} \right\rvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}}\right\rangle & \cdots & \left\langle\left.\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)} \right\rvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}(k-1)}\right\rangle\end{array}\right]$.
Note that the symbol f is suppressed in the expression of the matrix elements of \tilde{M}, i.e.

$$
\left\langle\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l} \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l^{\prime}}\right.\right\rangle \equiv\left\langle\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}, f \left\lvert\, \alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l^{\prime}}\right., f\right\rangle \quad l, l^{\prime}=0,1, \ldots, k-1 .
$$

Thus, the matrix elements of \tilde{M} read

$$
\begin{equation*}
\tilde{M}_{l, l^{\prime}}=e_{q, f}^{-1}\left(|\alpha|^{2}\right) e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k}\left(l^{\prime}-l\right)}\right) \tag{48}
\end{equation*}
$$

Because \tilde{M} is Hermitian, its eigenstates with different eigenvalues must be orthogonal to one another. Suppose that $\left|C_{i}\right\rangle$ and $\left|C_{j}\right\rangle$ are its two eigenstates. It follows that

$$
\begin{align*}
& \tilde{M}\left|C_{i}\right\rangle=\lambda_{i}\left|C_{i}\right\rangle \tag{49}\\
& \tilde{M}\left|C_{j}\right\rangle=\lambda_{j}\left|C_{j}\right\rangle
\end{align*}
$$

where

$$
\left|C_{j}\right\rangle=\left[\begin{array}{c}
1 \tag{50}\\
\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j} \\
\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j 2} \\
\vdots \\
\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j(k-1)}
\end{array}\right]
$$

and

$$
\begin{equation*}
\lambda_{j}=e_{q, f}^{-1}\left(|\alpha|^{2}\right) \sum_{l=0}^{k-1} e_{q, f}\left(|\alpha|^{2} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}\right) \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l} \tag{51}
\end{equation*}
$$

The orthonormality relation reads

$$
\begin{equation*}
\left\langle C_{i} \mid C_{j}\right\rangle=k \delta_{i j} \tag{52}
\end{equation*}
$$

Replacing the expansion coefficients in (43) by the column vector (50) and considering the normalization condition of the states (43), we obtain

$$
\begin{equation*}
\left|\phi_{j}\right\rangle=\left(k \lambda_{j}\right)^{-\frac{1}{2}} \sum_{l=0}^{k-1} \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l}\left|\alpha \mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} l}, f\right\rangle \quad j=0,1, \ldots, k-1 . \tag{53}
\end{equation*}
$$

By virtue of (49) and (52), it is easy to prove that the inner product of two states of (53) is

$$
\begin{equation*}
\left\langle\phi_{i} \mid \phi_{j}\right\rangle=\frac{\left(\lambda_{i} \lambda_{j}\right)^{-\frac{1}{2}}}{k}\left\langle C_{i}\right| \tilde{M}\left|C_{j}\right\rangle=\left(\frac{\lambda_{i}}{\lambda_{j}}\right)^{\frac{1}{2}} \delta_{i j}=\delta_{i j} \tag{54}
\end{equation*}
$$

which indicates that the states (53) form an orthonormalized set.
The physical meaning of the state $\left|\phi_{j}\right\rangle$ in (53) has been made clearer. The state $\left|\phi_{j}\right\rangle$ can be generated by a linear superposition of the k time-dependent $q-f$-coherent states $\left|\alpha \mathrm{e}^{-\mathrm{i} \omega t_{l}}, f\right\rangle$ $(l=0,1, \ldots, k-1)$ at different instants, while the superposition coefficients are $C_{l}^{j}\left(=\mathrm{e}^{-\mathrm{i} \frac{2 \pi}{k} j l}\right)$.

It can be proved that

$$
\begin{align*}
& \left|\phi_{0}\right\rangle=\left|\psi_{0}(\alpha, f)\right\rangle_{k} \tag{55}\\
& \left|\phi_{k-l}\right\rangle=\left|\psi_{l}(\alpha, f)\right\rangle_{k} \quad l=1,2, \ldots, k-1 . \tag{56}
\end{align*}
$$

Therefore, $\left|\phi_{j}\right\rangle_{k}(j=0,1, \ldots, k-1)$ are exactly the k orthonormalized eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ in (7).

The above discussion includes the limiting case of $f\left(N_{q}\right) \rightarrow 1$ investigated in [25]. In fact, the method for construction of the k eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$ in this section is somewhat different from that in section 3 .

5. Conclusions

We have derived the k orthonormalized eigenstates of the k th power $\left(a_{q} f\left(N_{q}\right)\right)^{k}(k \geqslant 1)$ of the generalized q-boson annihilation operator $a_{q} f\left(N_{q}\right)$, discussed their properties and given some applications of the result. We have proposed an alternative method to construct these eigenstates of $\left(a_{q} f\left(N_{q}\right)\right)^{k}$, and come to an important conclusion that all of them can be expressed as a linear superposition of $k q-f$-coherent states that have the same amplitude but different phases. We have also explored their physical meaning and shown that they can be generated by a linear superposition of the time-dependent $q-f$-coherent states at different instants.

References

[1] Schrödinger E 1926 Naturwissenschaften 14664
[2] Glauber R J 1963 Phys. Rev. A 1312766
[3] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)
[4] Klauder J R and Skagerstam B S 1985 Coherent States-Applications in Physics and Mathematical Physics (Singapore: World Scientific)
[5] Perelomov A 1986 Generalized Coherent States and their Applications (Berlin: Springer)
[6] Zhang W M, Feng D H and Gilmore R 1990 Rev. Mod. Phys. 62867
[7] Ali S T, Antoine J-P and Gazeau J-P 2000 Coherent States, Wavelets and their Generalizations (New York: Springer)
[8] Dodonov V V, Malkin I A and Man’ko V I 1974 Physica 72597
[9] Hillery M 1987 Phys. Rev. A 363796
[10] Xia Y J and Guo G C 1989 Phys. Lett. A 136281
[11] Bužek V, Vidiella-Barranco A and Knight P L 1992 Phys. Rev. A 456750
[12] Sun J, Wang J and Wang C 1991 Phys. Rev. A 443369 Sun J, Wang J and Wang C 1992 Phys. Rev. A 461700
[13] Bužek V, Jex I and Quang T 1990 J. Mod. Opt. 37159
[14] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[15] Chaichian M, Ellinas D and Kulish P 1990 Phys. Rev. Lett. 65980
[16] Gray R W and Nelson C A 1990 J. Phys. A: Math. Gen. 23 L945 Nelson C A 1992 Preprint SUNY BING 9/7/92 Chiu S H, Gray R W and Nelson C A 1992 Phys. Lett. A 164237 Nelson C A and Fields M H 1993 Preprint SUNY BING 12/15/93
[17] Bracken A J, McAnally D S, Zhang R B and Gould M D 1991 J. Phys. A: Math. Gen. 241379
[18] Jurčo B 1991 Lett. Math. Phys. 2151
[19] Solomon A I and Katriel J 1990 J. Phys. A: Math. Gen. 23 L1209 Katriel J and Solomon A I 1991 J. Phys. A: Math. Gen. 242093
[20] Celeghini E, Rasetti M and Vitiello G 1991 Phys. Rev. Lett. 662056
[21] Bužek V 1991 J. Mod. Opt. 38801
[22] Floratos E G 1991 J. Phys. A: Math. Gen. 244739
[23] Wang F B and Kuang L M 1992 Phys. Lett. A 169225
[24] Kuang L M and Wang F B 1993 Phys. Lett. A 173221
[25] Liu X M, Wang S J and Zhang W Z 1995 Phys. Rev. A 514929 Liu X M 1994 PhD Thesis Lanzhou University, China
[26] Kuang L M, Wang F B and Zeng G J 1993 Phys. Lett. A 1761
[27] Manko V I, Marmo G, Zaccaria F and Sudarshan E C G 1997 Phys. Scr. 55528
[28] de Matos Filho R L and Vogel W 1996 Phys. Rev. A 544560
[29] Mancini S 1997 Phys. Lett. A 233291
[30] Sivakumar S 1998 Phys. Lett. A 250257
[31] Liu X M 1999 J. Phys. A: Math. Gen. 328685
[32] Klauder J R 1993 Mod. Phys. Lett. A 81735 Klauder J R 1995 Ann. Phys., NY 237147
[33] Gazeau J-P and Klauder J R 1999 J. Phys. A: Math. Gen. 32123

