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Abstract. The k orthonormalized eigenstates of the kth power (aqf (Nq))k (k � 1) of the
generalized q-boson annihilation operator aqf (Nq) are obtained, and their properties are discussed.
An alternative method to construct them is proposed, and it is shown that all of them can be expressed
as a linear superposition of k q–f -coherent states that have the same amplitude but different phases.
Physically, they can be generated by a linear superposition of the time-dependent q–f -coherent
states at different instants.

1. Introduction

The coherent states introduced by Schrödinger [1] and Glauber [2] are eigenstates of the boson
annihilation operator a, and have widespread applications in the fields of physics [3–7]. The
even and odd coherent states [8], which are two orthonormalized eigenstates of the square a2

of the operator a, play an important role in quantum optics [9–11]. The k orthonormalized
eigenstates of the kth power ak (k � 1)were constructed and applied to quantum optics [12,13].
The notion of coherent states was extended to q-coherent states [14], which are eigenstates
of the q-boson annihilation operator aq . The q-coherent states were well studied and applied
widely to quantum optics and mathematical physics [14–22]. The even and odd q-coherent
states [23], defined as two orthonormalized eigenstates of the square a2

q of the operator aq ,
have non-classical effects [24]. Moreover, the k orthonormalized eigenstates of the kth power
akq were well investigated and applied to quantum optics [25, 26].

Recently, there has been much interest in the study of nonlinear coherent states called f -
coherent states [27], which are eigenstates of the annihilation operator af (N) of f -oscillators,
where f (N) is an operator-valued function of the boson number operator N . A class of
f -coherent states can be realized physically as the stationary states of the centre-of-mass
motion of a trapped ion [28]. The f -coherent states exhibit non-classical features such as
squeezing and self-splitting. Subsequently, the even and odd f -coherent states, which are two
orthonormalized eigenstates of the square (af (N))2 of the operator af (N), were constructed
and their non-classical effects were studied [29, 30]. In a previous paper [31], we obtained
k orthonormalized eigenstates of the kth power (af (N))k and discussed their properties.
Naturally, in this paper, it is very desirable to study the orthonormalized eigenstates of the kth
power (aqf (Nq))

k of the operator aqf (Nq), where f (Nq) is an operator-valued function of
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the q-boson number operatorNq . We refer to aqf (Nq) as the generalized q-boson annihilation
operator.

The paper is organized as follows. In section 2, the k orthonormalized eigenstates of
the operator (aqf (Nq))

k are obtained, and their properties are discussed. In section 3, an
alternative method to construct them is proposed. Their physical meaning is explored in
section 4.

2. The k orthonormalized eigenstates of (aqf (Nq))k

The q-boson annihilation operator aq , creation operator a+
q and number operatorNq satisfy the

quantum Heisenberg–Weyl algebra

aqa
+
q − qa+

q aq = q−Nq (1)

[Nq, aq] = −aq [Nq, a
+
q ] = a+

q (2)

with q real and positive. The operators aq , a+
q and Nq act in a Hilbert space with the q-

occupation number basis |n〉q (n = 0, 1, 2, . . .), such that

aq |0〉q = 0 |n〉q = (a+
q )
n

√
[n]!

|0〉q (3)

where

[n]! = [n][n− 1] . . . [1] [0]! = 1 (4)

[n] = qn − q−n

q − q−1
. (5)

Their actions on the basis states are given by

aq |n〉q =
√

[n]|n− 1〉q a+
q |n〉q =

√
[n + 1]|n + 1〉q Nq |n〉q = n|n〉q . (6)

Let us consider the following states:

|ψj(α, f )〉k = Cj

∞∑
n=0

αkn+j

√
[kn + j ]!f (kn + j)!

|kn + j〉q (7)

with

f (kn + j)! = f (kn + j)f (kn + j − 1) . . . f (1) f (0)! = 1 (8)

where k is a positive integer (k = 1, 2, 3, . . .); j = 0, 1, . . . , k − 1; Cj are normalized factors
and α is a complex parameter. Let A = aqf (Nq). With the kth power Ak operating on
|ψj(α, f )〉k , we have

Ak|ψj(α, f )〉k = αk|ψj(α, f )〉k. (9)

As a result, the k states of (7) are all the eigenstates of the operator (aqf (Nq))
k with the

same eigenvalue αk . It is easy to check that, for the same value of k, these states are orthogonal
to each other with respect to the subscript j , i.e.

k〈ψi(α, f )|ψj(α′, f )〉k = 0 i, j = 0, 1, . . . , k − 1, i 	= j. (10)

Let |α|2 = x. We easily supposeCj to be a real number. Using the normalized conditions

k〈ψj(α, f )|ψj(α, f )〉k = C2
j

∞∑
n=0

xkn+j

[kn + j ]!|f (kn + j)!|2 = C2
j Aj (x, f ) = 1 (11)

we have

Cj = A
− 1

2
j (x, f ) (12)
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where

Aj(x, f ) =
∞∑
n=0

xkn+j

[kn + j ]!|f (kn + j)!|2 . (13)

From (13) it follows that
k−1∑
j=0

Aj(x, f ) =
∞∑
n=0

xn

[n]!|f (n)!|2 ≡ eq,f (x). (14)

It should be noted that the k states |ψj(α, f )〉k (j = 0, 1, . . . , k − 1) are normalizable
provided Cj are non-zero and finite. This means that the terms in summation for Aj(x, f )
should be such that

|α|2 < lim
n→∞[n]|f (n)|2. (15)

If |f (n)| decreases faster than [n]−
1
2 for large n, then the range of α for which the states

|ψj(α, f )〉k are normalizable is restricted to values satisfying (15) and in other cases the range
of α is unrestricted.

We may obtain

A|ψj(α, f )〉k = αA
− 1

2
j (|α|2, f )A

1
2
j−1(|α|2, f )|ψj−1(α, f )〉k j = 1, 2, . . . , k − 1 (16)

Ai |ψ0(α, f )〉k = αiA
− 1

2
0 (|α|2, f )A

1
2
k−i (|α|2, f )|ψk−i (α, f )〉k i = 1, 2, . . . , k. (17)

This indicates that, by the successive actions of the operator A, the k eigenstate vectors of
Ak can be transformed into each other in this way: |ψ0〉k → |ψk−1〉k → |ψk−2〉k → · · · →
|ψ1〉k → |ψ0〉k.Actually, the operatorA plays the role of a rotating operator in the k eigenstate
vectors of Ak .

According to (7), for k = 1, we obtain

|ψ0(α, f )〉1 = e
− 1

2
q,f (|α|2)

∞∑
n=0

αn√
[n]!f (n)!

|n〉q ≡ |α, f 〉. (18)

The states |α, f 〉 are eigenstates of aqf (Nq). This is a generalization of the notion of f -
coherent states, which are eigenstates of af (N). Therefore, we call |α, f 〉 the q–f -coherent
states.

According to (7), for k = 2, we obtain

|ψ0(α, f )〉2 = A
− 1

2
0 (|α|2, f )

∞∑
n=0

α2n

√
[2n]!f (2n)!

|2n〉q (19)

|ψ1(α, f )〉2 = A
− 1

2
1 (|α|2, f )

∞∑
n=0

α2n+1

√
[2n + 1]!f (2n + 1)!

|2n + 1〉q . (20)

The states |ψ0(α, f )〉2 and |ψ1(α, f )〉2 are two orthonormalized eigenstates of (aqf (Nq))
2.

This is a generalization of the notion of even and odd f -coherent states, which are two
orthonormalized eigenstates of (af (N))2. Therefore, we call |ψ0(α, f )〉2 and |ψ1(α, f )〉2

the even and odd q–f -coherent states, respectively.
In terms of the k eigenstates |ψj(α, f )〉k of Ak , the q–f -coherent states can be expanded

in this way:

|α, f 〉 = e
− 1

2
q,f (|α|2)

[ k−1∑
j=0

A
1
2
j (|α|2, f )|ψj(α, f )〉k

]
. (21)

Note that |α, f 〉 and |ψj(α, f )〉k are non-trivially different.
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We should emphasize that here we discuss orthogonality of |ψj(α, f )〉k with respect to
subscript j . For α 	= α′, we obtain

k〈ψj(α, f )|ψj(α′, f )〉k = [Aj(|α|2, f )Aj (|α′|2, f )]−
1
2
Aj(α

∗α′, f ) 	= 0. (22)

Therefore, when α 	= α′, |ψj(α, f )〉k and |ψj(α′, f )〉k are not orthogonal.
As three limiting cases, for q→1 |ψj(α, f )〉k become k orthonormalized eigenstates of

(af (N))k; forf (Nq)→1 |ψj(α, f )〉k become those of akq ; for q→1 andf (Nq)→1 |ψj(α, f )〉k
become those of ak .

Now, we give some applications of the result (7). Taking f (Nq) to be 1√
[Nq ]

, we find

k orthonormalized eigenstates of the kth power (exp(iϕ))k of the q-photon phase operator
exp(iϕ)(≡aq 1√

[Nq ]
) [16], namely,

|ψj(α, f )〉k =
√

1 − |α|2k
|α|j

∞∑
n=0

αkn+j |kn + j〉q |α| < 1. (23)

Taking f (Nq) to be
√

[Nq], we find k orthonormalized eigenstates of the kth power Kk
− of

the annihilation operator K−(≡aq
√

[Nq]) of the quantum SU(1, 1)q algebra in the Holstein–
Primakoff realization [15], namely,

|ψj(α, f )〉k = A
− 1

2
j

∞∑
n=0

αkn+j

[kn + j ]!
|kn + j〉q |α| < ∞ (24)

with

Aj =
∞∑
n=0

(|α|2)kn+j

([kn + j ]!)2
. (25)

It is noteworthy that Klauder and co-workers have studied an extremely wide class of
coherent states that includes the f -coherent states as a small subset [32, 33]. However, the
k orthonormalized eigenstates of (aqf (Nq))

k are different from the Klauder-type coherent
states. In the limiting case q→1, the k states can also be obtained by considering a suitable
linear superposition of the Klauder-type states.

3. An alternative method for construction of the k orthonormalized eigenstates of
(aqf (Nq))k

According to (18), we consider the following k q–f -coherent states:

|αl, f 〉 = |αei 2π
k
l , f 〉

= e
− 1

2
q,f (|α|2)

∞∑
n=0

αn√
[n]!f (n)!

ei 2π
k
ln|n〉q l = 0, 1, . . . , k − 1. (26)

The k q–f -coherent states are discretely distributed with an equal interval of angle along a
circle around the origin of the α-plane. The inner product of the two states of (26) is

〈αl, f |αl′ , f 〉 = e−1
q,f (|α|2)eq,f (|α|2ei 2π

k
(l′−l)) l, l′ = 0, 1, . . . , k − 1. (27)

Consider a linear transformation S such that

|ϕ〉k = S|α, f 〉k (28)
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where

|α, f 〉k =




|α0, f 〉
|α1, f 〉
...

|αk−1, f 〉


 |ϕ〉k =




|ϕ0〉k
|ϕ1〉k
...

|ϕk−1〉k


 . (29)

S is a k × k matrix that makes ϕj orthonormal, and k〈ϕj |ϕj ′ 〉k = δjj ′ . The above requirement
leads to a set of algebraic equations for Sij ,

k−1∑
l=0

k−1∑
l′=0

e−1
q,f (|α|2)eq,f (|α|2ei 2π

k
(l′−l))S∗

j lSj ′l′ = δjj ′ . (30)

The solution of equation (30), Sij , can be found as follows. By virtue of the relation

k−1∑
l′=0

eq,f (|α|2e±i 2π
k
(l′−l))e−i 2π

k
j l′ = e−i 2π

k
j l
k−1∑
l′=0

eq,f (|α|2e±i 2π
k
l′)e−i 2π

k
j l′ (31)

the matrix elements of S that satisfy (30) are given by

Sjl = 1

k
e

1
2
q,f (|α|2)

[
1

k

k−1∑
l′=0

eq,f (|α|2ei 2π
k
l′)e−i 2π

k
j l′

]− 1
2

e−i 2π
k
j l

= 1

k
e

1
2
q,f (|α|2)A− 1

2
j (|α|2, f )e−i 2π

k
j l j, l = 0, 1, . . . , k − 1. (32)

From (28) and (32), we obtain k orthonormalized states

|ϕj 〉k = 1

k
A

− 1
2

j (|α|2, f )e
1
2
q,f (|α|2)

k−1∑
l=0

e−i 2π
k
j l|αei 2π

k
l , f 〉 j = 0, 1, . . . , k − 1 (33)

which are just what we want. By use of the relation

k−1∑
l=0

ei 2π
k
lt = 0 t = 1, 2, . . . , k − 1 (34)

it can be proved that

|ϕj 〉k = |ψj(α, f )〉k j = 0, 1, . . . , k − 1. (35)

According to (33), for k = 2, we obtain

|ϕ0〉2 = 1
2A

− 1
2

0 (|α|2, f )e
1
2
q,f (|α|2)(|α, f 〉 + |−α, f 〉) (36)

|ϕ1〉2 = 1
2A

− 1
2

1 (|α|2, f )e
1
2
q,f (|α|2)(|α, f 〉 − | − α, f 〉). (37)

This indicates that the even and odd q–f -coherent states can be represented as a linear
superposition of two q–f -coherent states, which have the same amplitude but opposite phases.

The states |ϕj 〉k (j = 0, 1, . . . , k−1) in (33) are exactly the k orthonormalized eigenstates
of (aqf (Nq))

k obtained in section 2, but reconstructed here by a different method. From the
above reconstruction, we come to an important conclusion that any orthonormalized eigenstates
of (aqf (Nq))

k can be expressed as a linear superposition of k q–f -coherent states |αei 2π
k
l , f 〉

(l = 0, 1, . . . , k − 1), which have the same amplitude but different phases. Yet, from (33),
one can find the connection between q–f -coherent states and these k eigenstates.

It is interesting to note that the above discussion includes two limiting cases of f (Nq)→1
and q→1 studied in [25] and [31], respectively.
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4. Physical meaning of the k orthonormalized eigenstates of (aqf (Nq))k

In this section, we shall explore the physical meaning of the k orthonormalized eigenstates
of (aqf (Nq))

k by constructing them from the time-dependent q–f -coherent states generated
from a time-dependent Schrödinger equation.

Suppose a system evolves according to the time-dependent Schrödinger equation

ih̄
∂

∂t
|χ(t)〉 = H |χ(t)〉. (38)

If the system is initially (t = 0) in a q–f -coherent state |α, f 〉, and the Hamiltonian is
independent of time, then at time t the system reaches the state

|χ(t)〉 = e− i
h̄
H t |α, f 〉. (39)

Choosing H = h̄ωNq , we have

|χ(t)〉 = |αe−iωt , f 〉. (40)

Therefore, at the instant

tl = 2π

ω

l

k
k = 1, 2, 3, . . . l = 0, 1, . . . , k − 1 (41)

the system is in the state

|χ(tl)〉 = |αe−i 2π
k
l , f 〉. (42)

Now let us consider a linear superposition of the above time-dependent q–f -coherent
states at different instants,

|φi〉 =
k−1∑
l=0

Ci
l |αe−i 2π

k
l , f 〉. (43)

Suitably choosing the expansion coefficients, we can construct the k orthonormalized states.
The inner product of the two states of (43) is

〈φi |φj 〉 =
k−1∑
l=0

k−1∑
l′=0

(Ci
l )

∗
C
j

l′ 〈αe−i 2π
k
l , f |αe−i 2π

k
l′ , f 〉

= 〈Ci |M̃|Cj 〉 i, j = 0, 1, . . . , k − 1 (44)

where

|Cj 〉 =




C
j

0

C
j

1
...

C
j

k−1


 (45)

〈Ci | = [Ci
0C

i
1 . . . C

i
k−1]

∗
(46)

M̃ =




〈α|α〉 〈α|αe−i 2π
k 〉 · · · 〈α|αe−i 2π

k
(k−1)〉

〈αe−i 2π
k |α〉 〈αe−i 2π

k |αe−i 2π
k 〉 · · · 〈αe−i 2π

k |αe−i 2π
k
(k−1)〉

...
...

...
...

〈αe−i 2π
k
(k−1)|α〉 〈αe−i 2π

k
(k−1)|αe−i 2π

k 〉 · · · 〈αe−i 2π
k
(k−1)|αe−i 2π

k
(k−1)〉


 . (47)

Note that the symbol f is suppressed in the expression of the matrix elements of M̃ , i.e.

〈αe−i 2π
k
l|αe−i 2π

k
l′ 〉 ≡ 〈αe−i 2π

k
l , f |αe−i 2π

k
l′ , f 〉 l, l′ = 0, 1, . . . , k − 1.
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Thus, the matrix elements of M̃ read

M̃l,l′ = e−1
q,f (|α|2)eq,f (|α|2e−i 2π

k
(l′−l)). (48)

Because M̃ is Hermitian, its eigenstates with different eigenvalues must be orthogonal to one
another. Suppose that |Ci〉 and |Cj 〉 are its two eigenstates. It follows that

M̃|Ci〉 = λi |Ci〉
M̃|Cj 〉 = λj |Cj 〉

(49)

where

|Cj 〉 =




1

e−i 2π
k
j

e−i 2π
k
j2

...

e−i 2π
k
j (k−1)




(50)

and

λj = e−1
q,f (|α|2)

k−1∑
l=0

eq,f (|α|2e−i 2π
k
l)e−i 2π

k
j l . (51)

The orthonormality relation reads

〈Ci |Cj 〉 = kδij . (52)

Replacing the expansion coefficients in (43) by the column vector (50) and considering the
normalization condition of the states (43), we obtain

|φj 〉 = (kλj )
− 1

2

k−1∑
l=0

e−i 2π
k
j l|αe−i 2π

k
l , f 〉 j = 0, 1, . . . , k − 1. (53)

By virtue of (49) and (52), it is easy to prove that the inner product of two states of (53) is

〈φi |φj 〉 = (λiλj )
− 1

2

k
〈Ci |M̃|Cj 〉 =

(
λi

λj

)1
2

δij = δij (54)

which indicates that the states (53) form an orthonormalized set.
The physical meaning of the state |φj 〉 in (53) has been made clearer. The state |φj 〉 can be

generated by a linear superposition of the k time-dependent q–f -coherent states |αe−iωtl , f 〉
(l = 0, 1, . . . , k−1) at different instants, while the superposition coefficients areCj

l (=e−i 2π
k
j l).

It can be proved that

|φ0〉 = |ψ0(α, f )〉k (55)

|φk−l〉 = |ψl(α, f )〉k l = 1, 2, . . . , k − 1. (56)

Therefore, |φj 〉k (j = 0, 1, . . . , k − 1) are exactly the k orthonormalized eigenstates of
(aqf (Nq))

k in (7).
The above discussion includes the limiting case of f (Nq)→1 investigated in [25]. In fact,

the method for construction of the k eigenstates of (aqf (Nq))
k in this section is somewhat

different from that in section 3.
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5. Conclusions

We have derived the k orthonormalized eigenstates of the kth power (aqf (Nq))
k (k � 1) of

the generalized q-boson annihilation operator aqf (Nq), discussed their properties and given
some applications of the result. We have proposed an alternative method to construct these
eigenstates of (aqf (Nq))

k , and come to an important conclusion that all of them can be
expressed as a linear superposition of k q–f -coherent states that have the same amplitude
but different phases. We have also explored their physical meaning and shown that they can
be generated by a linear superposition of the time-dependent q–f -coherent states at different
instants.
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